PAPC couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion.

نویسندگان

  • Jérome Chal
  • Charlène Guillot
  • Olivier Pourquié
چکیده

Vertebrate segmentation is characterized by the periodic formation of epithelial somites from the mesenchymal presomitic mesoderm (PSM). How the rhythmic signaling pulse delivered by the segmentation clock is translated into the periodic morphogenesis of somites remains poorly understood. Here, we focused on the role of paraxial protocadherin (PAPC/Pcdh8) in this process. We showed that in chicken and mouse embryos, PAPC expression is tightly regulated by the clock and wavefront system in the posterior PSM. We observed that PAPC exhibits a striking complementary pattern to N-cadherin (CDH2), marking the interface of the future somite boundary in the anterior PSM. Gain and loss of function of PAPC in chicken embryos disrupted somite segmentation by altering the CDH2-dependent epithelialization of PSM cells. Our data suggest that clathrin-mediated endocytosis is increased in PAPC-expressing cells, subsequently affecting CDH2 internalization in the anterior compartment of the future somite. This in turn generates a differential adhesion interface, allowing formation of the acellular fissure that defines the somite boundary. Thus, periodic expression of PAPC in the anterior PSM triggers rhythmic endocytosis of CDH2, allowing for segmental de-adhesion and individualization of somites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity

Little is known about how protocadherins function in cell adhesion and tissue development. Paraxial protocadherin (PAPC) controls cell sorting and morphogenetic movements in the Xenopus laevis embryo. We find that PAPC mediates these functions by down-regulating the adhesion activity of C-cadherin. Expression of exogenous C-cadherin reverses PAPC-induced cell sorting and gastrulation defects. M...

متن کامل

A Protocadherin-Cadherin-FLRT3 Complex Controls Cell Adhesion and Morphogenesis

BACKGROUND Paraxial protocadherin (PAPC) and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3) are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion. PRINCIPAL FINDINGS We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 ar...

متن کامل

Structural elements necessary for oligomerization, trafficking, and cell sorting function of paraxial protocadherin.

Protocadherins have been shown to regulate cell adhesion, cell migration, cell survival, and tissue morphogenesis in the embryo and the central nervous system, but little is known about the mechanism of protocadherin function. We previously showed that Xenopus paraxial protocadherin (PAPC) mediates cell sorting and morphogenesis by down-regulating the adhesion activity of a classical cadherin, ...

متن کامل

The protocadherin PAPC establishes segmental boundaries during somitogenesis in Xenopus embryos

BACKGROUND One prominent example of segmentation in vertebrate embryos is the subdivision of the paraxial mesoderm into repeating, metameric structures called somites. During this process, cells in the presomitic mesoderm (PSM) are first patterned into segments leading secondarily to differences required for somite morphogenesis such as the formation of segmental boundaries. Recent studies have...

متن کامل

Vertebrate Segmentation: Snail Counts the Time until Morphogenesis

During segmentation of vertebrate embryos, unsegmented mesenchymal mesoderm is divided into epithelial segments called somites. This process is governed by oscillating gene expression of the somite clock. A recent paper identifies the transcription factor Snail as a link between the somite clock and the control of somite morphogenesis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 144 4  شماره 

صفحات  -

تاریخ انتشار 2017